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ABSTRACT  

Tactical military land operations heavily depend on the terrain, thus the terrain is always taken into account 
in the military decision making process. Terrain related (geospatial) tactical information products, such as 
optimal routes or avenues of approach are usually determined by terrain analysts in the Intelligence cell, 
however automated generation is possible as well. These products can be used in decision support tools to 
support the planning process. When machine learning is used in these decision support tools, the products can 
also be of benefit for modelling the behaviour of military units that is required for finding well-performing 
courses of action by machine learning. This work presents an overview of geospatial products and classifies 
them into a tier-based architecture in which products are based on products of underlying tiers. We 
furthermore formalize the steps of creating tactical terrain models and tactical mission models that are 
required for machine learning. Based on two practical examples we demonstrate how geospatial products can 
be generated in the proposed architecture, how these products can be used in machine learning for tactical 
planning, and how the learned courses of actions and intelligence products can be supplied to the planner in 
support of decision making. 

1.0 INTRODUCTION 

Military planning takes place at levels ranging from operational/joint planning down to tactical planning. 
The military decision making process at the tactical level calls for commanders and staff to analyse the 
mission and intent two levels up. Therefore Battalions or Brigades can copy and paste their higher 
headquarters mission statement into their own mission analysis. Due to the nature of tactical land combat 
operations, the guidance from these higher levels of command is mainly terrain related and the analysis of 
terrain in land-combat-operations decision making therefore is of great importance. For instance [1] shows 
the importance of terrain analysis by providing historical examples of battles where the impact of terrain on 
the battle was large. The concept of terrain analysis is part of the so-called “Intelligence Preparation of the 
Battlefield (IPB)”1. It is defined in [2] as “the systematic process of analysing the mission variables of 
enemy, terrain, weather, and civil considerations in an area of interest to determine their effect on 
operations”. IPB is a collaborative staff effort that is led by the intelligence staff (S-2/G2). 

The terrain analysis part of the IPB delivers so-called “geospatial products”. These, usually hand-crafted, 
products are central to the decision making process taking place in the other staff sections and staff officers 
use them in their manually performed processes. 

This paper focuses on the idea that these geospatial products can have a wider application in the automation 
of the planning process because the abstracted terrain view that these products provide can serve as a world 
model that can be leveraged in the automation or at least support of military decision making. The reason is 

1 IPB is sometimes also called IPE (Intelligence Preparation of the Environment) in order to include non-combat 
missions. 
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that currently emerging artificial intelligence (AI) applications for military decision making need such world 
models to perform their optimization processes. Therefore the products that result from the IPB can be used 
as a crucial step towards the support of decision making using AI technologies. 

On the one hand efforts are ongoing to automate the generation of geospatial products and on the other hand 
efforts are going on to perform automation in support of decision making steps. Therefore combining these 
efforts can result in a future where most of the process steps, from the initial terrain description to a Course-
Of-Action (COA) advice can be performed automatically. This is the vision we present in this paper. 

Section 2 describes which geospatial products are used in the planning process and also how automated 
production of these products will support the military planner. After that in Section 3 the concept of world 
modelling that is required in machine-learning-based concepts for plan optimization is discussed and finally 
in Section 4 two examples are shown. Section 5 concludes by describing future possibilities.  

2.0 GEOSPATIAL ANALYSIS AND THE MILITARY PLANNING PROCESS 

To get an overview of the available geo-spatial products, we first look closely at the IPB analysis in Section 
2.1. Section 2.2 classifies these products into several tiers, following ideas from the US Battlefield Terrain 
Reasoning and Awareness program. Each tier depends on its underlying tiers as input. The most basic tier 
(Tier-0), which does not depend on any other tier, is discussed as well.  

2.1 Intelligence Preparation of the Battlefield (IPB) 

The Intelligence Preparation of the Battlefield (IPB) is defined in [1] as “the systematic process of analysing 
the mission variables of enemy, terrain, weather, and civil considerations in an area of interest to determine 
their effect on operations … it results in intelligence products that are used during the military decision-
making process (MDMP) to assist in developing friendly courses of action (COAs).” It is performed in the 
following four steps: 

1. Define the Operational Environment.

2. Describe environmental effects on operations.

3. Evaluate the threat.

4. Determine threat Courses Of Action (COAs).

Figure 1 Sub-steps of IPB step-2, in this paper we only concentrate on the OAKOC part (the red rectangle) 
(figure taken from [1]) 

Terrain analysis is the key element of step-2 of the IPB which is worked out in detail in [3]. This step consists 
of several sub-steps which are shown in Figure 1. The second sub-step analyses how terrain can affect 
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operations through a so-called OAKOC analysis (Obstacles, Avenues of Approach, Key terrain, Observation 
and fields of fire, Cover and concealment). Two main products that are determined after the OAKOC 
analysis are the so-called Modified Combined Obstacle Overlay (MCOO) and the terrain effects matrix. An 
MCOO enables the decision maker to see where mobility corridors are, such that the most relevant ones for 
the mission can be chosen and the impact on the mission be discussed. The terrain-effects matrix describes 
OAKOC factor effects on operations. 

2.2 Leveraging terrain analysis products from the IPB for tactical decision making 

Several nations have worked on automation of the terrain analysis part of the IPB and on leveraging the 
terrain analysis tools and products that are normally the domain of the terrain analysts for tactical decision 
making. Bringing terrain analysis products into the tactical domain of the field commander was for instance 
the aim of the (2002) US Battlefield Terrain Reasoning and Awareness (BTRA) research program [4]. The 
(2006) US Geospatial Battle Management Language (geoBML) project [5] focused on providing a semantic 
and syntactic bridge between the domain of terrain reasoning and analysis and the domain of the operational 
commander’s tactical decision-making process by extending the lexicon of the Battle Management 
Language (BML)2 [6, 7]. The Common Ground project [8] took this a step further by also supporting the 
military decision maker with digital orders and so-called engineered knowledge (a database of tasks and 
capabilities by unit, echelon, service, and nation). 

Tactical Spatial Objects (TSOs) are the key products that provide the link between the world of the terrain 
analysts and the world of tactical decision making. They are defined as objects that are developed with 
geographic information systems that directly support the planning of tactical operations and that may contain 
the relationships to specific military operations, missions and tasks as well as various types of military 
organizations. They are categorized in layers, called tiers and can typically be calculated using BTRA’s 
Commercial Joint Mapping Toolkit (CJMTK) which is the replacement of the Joint Mapping Toolkit, 
previously used by the US Department of Defence. The CJMTK uses commercial of-the-shelve components 
to calculate these products based on foundational terrain data which comprises an integrated description of 
terrain characteristics that are sufficient for generating higher level products. The way these features are 
characterized is related to the foreseen tactical use of the terrain. For example, it is not sufficient to state that 
a certain area is a forest because, in order to travel through forest, the tree density must be known and 
therefore this must be part of the foundational data. The purpose of TSOs is not to replace humans with 
automation in regard to the geospatial dimension of mission command, but rather to allow commanders to 
evaluate geospatial variables more quickly. 

Inspired by the tier structure used in the BTRA project and extending this structure with foundational data, 
which we have called Tier-0, the TSOs can be divided into the following tiers: 
 Tier-0 TSOs are the foundational products, comprising an integrated description of terrain

characteristics. 
 Tier-1 TSOs are based only upon the terrain and can be pre-computed without being informed by the

other factors of METT-TC3. These TSOs in general concern large data sets, are generic/reusable and 
primarily static, i.e. not dependent on the dynamics of the mission environment such as weather. 

 Tier-2 TSOs can be derived from foundational terrain data and Tier-1 TSOs. They are mission specific
as they depend on the tasks that a unit needs to perform in that mission. Therefore these TSOs cannot 
be precomputed before mission information becomes available. These TSOs in general are fine grained, 

2 BML was the language for connecting C2 systems and simulations that was under  development at that time, currently 
the BML standard has been replaced with the C2SIM standard [21] 
3 METT-TC: Mission, Enemy, Terrain and Weather, Troops and Support Available, Time Available and 
Civil Considerations 
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concern information rather than data, are generic/reusable for different COAs but not across missions, 
and are more dynamic, i.e. more dependent on the dynamics of the mission environment such as weather. 

 Tier-3 TSOs are specific objects that have been selected to support a specific COA and are associated
with a plan or order. In many cases they have been chosen from the Tier-2 candidate TSOs and been 
further refined based upon METT-TC. They may also include graphic control measures and other items 
that are often associated with or influence the perception of terrain. 

Tier-1 products either are solely computed from Tier-0 products or partly dependent on other Tier-1 
products. Tier-2 products are computed based on Tier-1 products and Tier-3 products can either be selected 
from Tier-2 or Tier-1 products. All these characteristics are visualized in Figure 2. 

Figure 2 TSOs, Tier structure and tier characteristics 

Examples of TSOs are: 
Tier-0  Digital Terrain and Elevation Data (DTED) and other terrain features such as infrastructure, 

hydrology, vegetation, soil types, surface water, roads. Tier-0 products can be generated in a 
sequence of steps starting from raw sensor data, which we omit from this article. This data can be 
collected using (geo) data sources [9], satellites [10], drones [11], from open sources on the internet 
[12], amongst others. 

Tier-1 Cross Country Mobility; Combined Obstacle Overlay; Cover and Concealment, Manoeuvre 
Networks. 

Tier-2  Assembly Areas, Attack by Fire Positions, Avenues of Approach and Indirect Fire Positions. 
Tier-3  These are selected and possibly refined Tier-1 or Tier-2 products for use in a COA. Examples are 

Phase lines, lines of contact, engagement priorities and criteria, checkpoints, section boundaries. 

Many examples of Tier-1 and Tier-2 products are given in [3]. The following summarizes a few to give an 
impression (illustrated in Figure 3): 
 Cross Country Mobility (CCM) demonstrates the off-road speed for a vehicle as determined by the

terrain (soil, slope, and vegetation) and vehicle performance capabilities; however, it does not consider 
the effects of roads and obstacles. 

 Combined Obstacle Overlay (COO) integrates obstacles to vehicular movement (built-up areas, slope,
soils, vegetation, hydrology). 
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 Mobility Corridors are a combination of cross-country mobility, transportation, and linear obstacle
overlays to show mobility corridors that are based on the restrictiveness of the terrain, vehicle
capabilities, and preferred movement formations.

Figure 3 Three TSO examples (CCM, COO, MC) (figures taken from [3]) 

Another example Tier-2 TSO which combines many underlying TSOs is the so-called Modified Combined 
Obstacle Overlay (MCOO). The MCOO generation depends on the following Tier-1 products: 
 Cross-Country Mobility.
 Avenues of Approach / mobility corridors.
 Counter-mobility obstacle systems.
 Combined Obstacle Overlay
 Defensible terrain.
 Engagement areas.
 Key terrain.

An example of an MCOO is visualised in Figure 4. Here, the Avenues of Approach (which depend on the 
size of the unit) are clearly visible which is an important TSO for the example application that will be 
discussed in Section 4. 

Figure 4 Example MCOO (figure taken from [1]) 
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3.0 OPTIMIZATION OF MILITARY COURSES OF ACTION 

This section investigates how, in the planning of military operations, military COAs are optimized and how 
the optimization steps, that currently are primarily performed manually, can be automated. The section starts 
with describing the steps after which the automation possibilities are discussed. Since, for automation of 
COA optimization, simulation models are essential, this is discussed separately. 

3.1 Military COA planning 

The following figure visualises the steps that are currently used, whether implicitly or explicitly, in the 
optimization process of COAs where in general, COAs consist of many elements that can be represented by 
Tier-3 products. Also visualized is the type of information that needs to be provided in the intermediate steps. 
For the generation of Tier-2 TSOs this is mission specific METT-TC data, but for the optimization process, 
more information is required because the optimal solutions usually depend on objectives (both from own troops 
as well as enemy), unit capabilities and rules of engagement. 

Figure 5 Description of the process steps for finding optimal COA elements (Tier-3 products) using the tiered approach. 

Currently the planners in the plans cell (S5) take the information that is provided by the Intel cell (S2) and 
use that in combination with the mission objective to find best Courses Of actions (COAs). Translating this 
into TSO terms and referring to Figure 5 this means that the Intel cell provides Tier-1 and Tier-2 products 
which are used by the planners to find optimal COA elements (Tier-3 products). 

Generating generic geo-products (Tier-1) and Mission specific geo-products (Tier-2) products as done by 
the Intel cell currently is a mainly manual process, although pieces of this process are currently automated 
by military GIS applications. 

Generating Tier-3 products currently in practice is a fully manual process. Since humans can only hold a 
limited and small amount of data in their mind at any point in time, in order to increase the understanding 
of any problem, humans look for patterns and abstractions that help in reducing the need for memorizing 
data and create useful information. For these abstractions, map overlays are created that abstract a single 
aspects of the underlying, highly complex terrain. These overlays are used by the planner, who, given the 
military objective, foreseen enemy intent and doctrine and available units and their capabilities, uses an 
implicit model to envision a best COA. An example of a tactical important aspect is the presence of water 
in the form of rivers and lakes. The created overlay highlights this terrain feature with blue shapes, and only 
significantly large water features are added to the overlay to reduce mental load. Once enough of these 
overlays have been created, the entire tactical reasoning will be performed using the overlays and not the 
underlying data. 
Another example is the case of finding optimal casualty collection point locations and routes. The route and 
collection points need to meet certain conditions, such as being close to one another. The overlays are used 
to identify several suitable collection point locations and several attractive routes. The most combinations 
that are likely to work well are compared to one another and one chosen. 

Tier-0Source/Sensor
Data

- METT-TC
- Objectives (intent)
- Unit (Own+Enemy) capabilities
- Rules Of Engagement

METT-TC
(Mission, Enemy, Terrain and Weather, 
Troops and Support Available, Time 
Available and Civil Considerations)

Derive
Generic

Geo-products
Tier-1

Derive
Mission Specific

Geo-products
Tier-2 Tier-3

COA
Optimization
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3.2 COA planning automation 

This section describes the possibilities for automating the process steps described in the previous section. 

Currently the generating Tier-1, Tier-2 products in the military world currently is only done partially. A 
gradual shift towards more automation can be seen within NATO armies with the ultimate future vision of 
full automation. 

For the COA optimization, that is, the generation of Tier-3 products based on Tier-1 and Tier-2 input, this 
is a different matter. In the manual casualty collection points optimization process described in the previous 
section the example is a simple case in which a human only needs to find a solution to a problem with a few 
degrees of freedom. In reality the potential solution space can be enormous. Take for instance that there 
exist 20 suitable collection points and 30 likely routes. A human cannot consider all 600 combinations and 
will prune combinations based on (possibly fallible) heuristics. With more variables, such as fire support, 
extraction points, unknown hostile movement, the probability of good solutions being discarded by the 
planner increases. 

Automation of optimization of COA elements can be done using Artificial Intelligence techniques, which 
basically are search techniques for finding optimal solutions in large solution spaces. In order to define what 
the ‘optimal’ solution entails, an evaluation function has to be designed that describes the attractiveness of 
each COA solution based on its properties. In a military setting this is usually called the Measure Of 
Effectiveness (MOE). For a military planner the COA solution may consist of various (configuration) 
settings of a given COA, such as what actions to execute and in what ordering. In many situations, the 
function between the COA’s input features and evaluation score cannot be determined directly because, 
especially in manoeuvre warfare, time/space considerations are required and actual simulations need to be 
performed to find the MOE of a certain solution. Other difficulties can arise from the fact that the function 
from COA input space to MOEs is hyperdimensional and the solutions space is not a convex surface, making 
it hard to find the optimum. In such occasions machine learning techniques can be employed to find well-
performing values for the input features. Example search techniques that aim at finding good solutions are 
Genetic Algorithms and Reinforcement Learning, see e.g. [13, 14]. In order to be able to use such techniques, 
simulation models are required. The next section discussed these. 
Future vision: We envision a future where the process steps as depicted in Figure 5 can be performed 
automatically to a high degree. When also the steps to generate Tier-0 products could be automated, this 
vision can be presented as the process “From satellite image to plans.”. 

3.3 Simulation modelling for COA optimization 

In order to perform the automation as described in the previous section, (simulation) models are required 
that can be executed in order to evaluate a chosen COA and determine the corresponding MOE. A 
requirement for such simulations in a decision support context is that it can be computed fast enough because 
(1) in general, not much time is available to set-up a simulation environment and (2) machine learning 
technologies in general require many simulations to be performed (depending on the technology used this 
can range from thousands to millions of simulation runs) and (3) the context of the mission can change and 
may require a quick response of the system to deliver decision support in an evolving mission. Therefore 
simulation models should be as simple as possible but still have a level of detail that captures the essence of 
the mission. 

Simulation models currently in use for the military domain have been mainly based on simulating “from the 
dirt level” as described in [15], which means that the terrain is usually modelled in sufficient detail to enable 
a realistic movement of units through terrain which in general is not required for COA optimization. 
However, these types of models in general are too detailed and too slow for optimization purposes because 
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(1) setting up these simulations requires extensive configuration and (2) executing simulation runs is too 
slow to perform many simulations. 

Therefore, for plan optimization, the idea that is presented in this paper is to integrate M&S with GIS 
information and thus enable simulations to be performed at the tactical level rather than at the “dirt” level 
and use sematic information rather than basic terrain representation as used in many simulators. Next to this 
environment modelling, also unit behaviour needs to be modelled. Therefore, in order to facilitate plan 
optimization, we recognize that the we need (abstract) tactical mission models. Such mission models need 
to contain aspects of terrain as well as aspects of the entities involved in the mission. Therefore we 
differentiate between mission models and terrain4 models. Tactical terrain models and tactical mission 
models are described below in more detail. 

Tactical Terrain Model (TTM): This model is the set of Tier-0, 1, 2 TSO products abstracted in such a 
manner that they can be used to simulate units quickly, yet sufficiently realistic. Instead of units moving 
through detailed terrain they move along a grid, nodes, edges, cells or another form of an “abstract terrain”. 
The abstracted terrain has to capture the essence of the “dirt” level as far as this is relevant for the entities 
involved. These models are mission dependent because they depend on Tier-2 products and also because 
terrain characteristics that relate to the mission are part of the model. For instance, in a delay operation, 
aspects such as maximum reachable delay as a function of geographic location and unit to be delayed can 
be part of a TTM. 

Tactical Mission Model (TMM): Units and their behaviour are modelled in such a way as to enable them 
to operate in the tactical terrain model. The abstraction of the environment imposes an abstraction of the 
actions. For example when the terrain is captured in nodes and edges, units can only be placed on nodes, 
and move to other nodes via an edge. It is not possible to leave the graph, although in the real world moving 
to locations outside the graph edges would be perfectly feasible. When military units interact (e.g., own 
versus enemy) the interactions are modelled via “game” rules such as who can fire at whom, with what 
speed can be moved, what are detection and firing ranges, what are the relative strengths when units fire at 
each other, etc. Capturing the dynamic and complex reality in such game rules can be a challenge on itself, 
but is essential for optimization. Figure 6 visualises TTM and TMM 

Figure 6 Tactical Terrain Models (TTM) and Tactical Mission Models (TMM), their interrelation and dependency on 

The basics of the idea of tactical terrain modelling for different purposes than COA optimization have already 
been investigated in [15], [16], [17]for training simulators. In [18] such types of models are also described but 
in this case for yet another purpose, namely to abstract the context of a detailed simulator to enable the 
simulation of intelligent agents within this simulator. It also describes ideas for using this information for 
decision makers in the operational process.  

4 Note that we currently call this: terrain model while in the future, when other aspects of the mission, such as cyber, 
are also taken into account, the more generic term “environment model” may be used. 

Tactical
Terrain
Model

”World” rules abstraction 
(geographically related).

Tactical Mission Model
Mission contexts
(Objectives, Intent, rules of 
engagement, unit capabilities)
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4.0 IMPLEMENTATIONS OF AUTOMATED COA OPTIMIZATION 

We describe two example cases, namely (1) the automated “engineering effect” plan and (2) the small-unit 
plan optimization, both using the concepts described above, namely the use of environment and tactical 
modelling in order to facilitate the use of AI optimization techniques for optimal planning. 

4.1 Creating an effect plan based on an Avenues of Approach overlay 

The Netherlands Combat Operations Support with Modelling & Simulation (COSMOS) project works on 
AI based decision support for land operations. The following use-case was part of this project. 

The military engineer is able to place effects in the physical landscape to hinder the approach of an opponent. 
For instance in a defensive operation, delaying the opposing forces may be the main objective. The military 
engineer then is tasked to study the terrain and find the best placements for effects. The engineer takes 
knowledge of the opponent, the terrain and of course own capabilities and limitations into account. The 
number of combinations (what effect is placed where) is too large to comprehend for a human, and 
uncertainty and ambiguity in observations make it even harder to think through all possible solutions. Thus, 
decision support by an AI seems a valuable addition. 

The possible effects that can be placed are block, fix, disrupt and turn. With a block effect, the opposing 
force is hindered in such a way that they cannot break through the blockade (during the relevant mission 
time). With a fix effect the opponent is fixed on the current position for a certain amount of time, but is able 
to continue its journey later. A disrupt effect temporarily disrupts the approach of the opponent, but the 
opponent is able to continue the approach quickly. With a turn effect the opponent is being suggested to 
take a desired direction by blockading the other directions in such a manner that the time investment to take 
those directions is too large. 

The above described effects cost resources to be achievable. Examples include mines, concertina wire, time, 
fire support. The amount of resources needed are heavily dependent on the terrain characteristics of each 
location. For instance can a block effect be achieved much easier when natural obstacles such as a lake or 
river form natural blockades, and only a single road or bridge needs to be blocked by the engineers. Blocking 
an enemy in an open field is possible, but very costly to achieve, as then bulldozers need to dig long trenches 
so that the opponent cannot simply travel cross country to circumvent the obstacles. 

A military engineer needs to take all these factors into account and at the same time be robust against the 
most-likely, most-dangerous and all other enemy courses of actions that might occur. An AI-based decision 
support system may be able to support the engineer by optimizing the obstacle plan to achieve the maximal 
delay of the opponent while adhering to the constraints of its own capabilities in the given terrain. The next 
steps describe a system where information products from Tier-0, Tier-1 and Tier-2 are used to support the 
engineer’s decision making. An overview of such a system is shown in Figure 7. A discussion of the steps 
is given below the figure. 
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Figure 7: Overview of the products involved in the COSMOS prototype. The green Tier-3 TSO product was generated by the 
Automated Optimization process, in this case using a genetic algorithm. 

Tier-0: 
Based on for example satellite images a foundational model of the terrain is created. This model includes 
information such as roads, soil composition, vegetation, building locations. This model can be created weeks 
before the mission, as the real world is not changing that quickly.  

Tier-1: 
The foundational model (Tier-0) is analysed to generate a Combined Obstacle Overlay (COO) based on 
natural and man-made obstacles for the current mission context. Also a manoeuvre network is generated 
that takes into account both the Cross-Country Mobility (CCM) network as well as the road network. Such 
a manoeuvre network can be precomputed for different kinds of vehicles and different weather conditions 
and when the units are known requires only retrieving the characteristics for the specific unit types. For 
instance, with loose soil, traveling cross country with wheeled vehicles may not be feasible when it has been 
raining the past weeks, while travelling with a tracked vehicle this may be possible. With the estimated 
composition (Orbat) of the opponent as determined by the intelligence cell in mind, the COO can be 
annotated on the map as an overlay. An example of such obstacles is shown in Figure 8. In this terrain, dense 
forests and densely populated cities are marked as unpassable (hatched areas). Also a river and a bridge is 
annotated.  

Figure 8: Natural obstacles based on terrain: dense forests, cities, river. 
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This task is commonly performed by the military engineer manually. This takes time however, and many 
maps, satellite images and sometimes field studies are performed to have accurate results. Here automated 
Tier-1 analysis tooling can in the future create a first calculation of such obstacles. For this study, we created 
this manually with the support of a military engineer. 

Tier-2: 
With the manoeuvre network and COO in hand, all possible manners of movement in the current terrain and 
mission context are known. Given this and the mission characteristics (objective area of opponent) and 
opponent’s characteristics (unit size), the so-called Avenues Of Approach (AA) Tier-2 TSO can be 
generated. In our case this was still done manually, but we foresee that this will be possible to be automated 
in the future. Such AAs indicate the main routes that the opponent may travel on, given its size and objective 
area. Therefore, in order to delay the enemy, these avenues should be targeted with effects to achieve the 
desired delay.  

Figure 9: Manoeuvre Network (left) and Avenues of Approach (Right). 

With these AAs as input, suitable positions for fire support can be determined. Such fire support positions 
should be able to cover the avenues of approach in order to increase the effectives of the effects that are 
placed on the avenues of approach. In our use case we assumed that adequate firing positions can be found. 
Although we did not optimize firing positions, we want to mention fire support here as it is an essential part 
of making an effect for delaying the opponent more efficient. 

Tactical Terrain Model and Tactical Mission Model: 
The tactical terrain model consists of two main components. (1) For each location, the costs required to 
achieve an effect on a certain position is needed. Given the terrain, how many mines, man-hours, wires, 
explosive charges are needed to create a certain effect on a certain location. The terrain properties play a 
large role in the effect costs. Next to the costs, (2) the achieved delay that a chosen effect on a location 
creates has to be determined. In case of turn effects, rather than delaying an opposing force, the movement 
directions are being limited. Information from Tier-1 and Tier-0 products may be analysed to set appropriate 
values for these parameters.  

In the tactical mission model we define the victory conditions. In our case the victory condition for Red is 
achieved when the second unit arrives at an important bridge. We choose the second unit as in our scenario 
one unit has not enough momentum to conquer the bridge, and only when two red units work together is the 
bridge lost. Another part of the mission model is the enemy intel. In different settings we experimented with 
the enemy have various reconnaissance capabilities that enabled red to spot obstacles beforehand and choose 
a circumventing route. The route preferences of the red force, according to a route planner, describes the 
likely choices of the opponent in the manoeuvre network. 
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Tier-3: 
Given the Tier-0, Tier-1 and Tier-2 products (the possible avenues of approach, where effects can be placed 
and what the cost of these effects are in terms of resources for each location). Given these models, the 
following constraint satisfaction problem can be formulated “Given that the average delay of the opponent 
should be maximized and given the constraints in terms of resources, what are the most effective effect 
location and types?” To answer this question, we employ a genetic algorithm that iteratively improves a (set 
of) solutions.  

Such an optimized solution can be used by the military engineer as inspiration, or confirm the effect position 
that the engineer him/herself envisioned. Additional functionality may include features such as what-if analysis 
and explanations why certain effect setups do not work well against a (set of) enemy courses of action. 

4.2 The ZebraSword experiment 

The Defence research programme AI for Military Simulation performs R&D on AI based decision support 
for military operations. The following use-case was part of this project. 
ZebraSword was a Royal Netherlands Army 2020 training and experimentation exercise for robotic platoon 
operations. One of the scenarios during the exercise covers a remote controlled ambush, wherein several 
technical and procedural innovations were evaluated such as remote standoff engagements. In the scenario 
the opponent platoon arrives from the north and wants to capture a village in the south. The friendly 
platoon’s task is to prevent the enemy from capturing the village, making optimal use of terrain features and 
unit capabilities. Inspired by this scenario we developed a prototype decision support tool based on the 
automated COA optimization approach described in Section 3.2 with the primary objective to aid the 
commander in selecting the best ambush positions for his/her forces (for two infantry groups and a single 
remote controlled heavy weapons platform). A selection of the TSO products generated by this decision 
support tool to support the platoon commander in mission analysis and planning, can be seen in Figure 10 
below. These include a heatmap of likely enemy contact positions, a map of routes to follow towards ambush 
positions, and what most likely enemy routes towards their target location would be. 

Figure 10: Decision Support for the Platoon Commander. From left to right: heatmap of likely enemy contact position, preferred 
routes towards ambush positions, for each position the most likely enemy travel direction towards their target, and the top ambush 
positions. 

The next steps describe the prototype system in terms of the automated COA optimisation approach 
presented in Section 3.2, of which an overview is given in Figure 11. With this approach products from Tier-
0 and Tier-1 are used to create a Tactical Terrain Model and Tactical Mission Model that can be optimised 
using a combination of reinforcement learning techniques to generate the desired Tier-2 and Tier-3 TSO 
products for decision support. 
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Figure 11: Overview of the products involved in the ZebraSword prototype. Green Tier-2 and Tier-3 TSO products are generated 
by the Automated COA Optimization process using Reinforcement Learning. 

Tier 0: 
A foundational model of the terrain was not created explicitly for the prototype. Nevertheless, Tier-0 
foundational data that was used to build other TSO’s is manually derived from aerial imagery and includes 
elevation, vegetation, hydro, urban and road maps. 

Tier-1: 
Based on manual analysis of the Tier-0 products, several Tier-1 products can be created. These include a 
Cross Country Mobility and Manoeuvre Network map.  

Tactical Terrain Model and Tactical Mission Model: 
From these products and the Tier-0 products, the Tactical Terrain Model is created. In this case the world is 
manually abstracted into hexagons with diameter of 100 meters, which corresponds roughly to the area a single 
group within a platoon can cover. Each hexagon holds properties such as the terrain type (plains, forest, water, 
urban), traverse cost, whether it can provide cover, and whether it blocks line of sight. Overlayed on the 
hexagon map a sparse manoeuvre graph is placed based on the Manoeuvre Network, in such a way that units 
can use the terrain to their advantage, for instance units in ambushes positions in forest edges have an advantage 
because such a unit is able to see any units on the nearby planes, while itself remaining invisible. In order to 
facilitate that, the nodes in forest edges were given the characteristics to enable these concealment calculations. 



Geospatial analysis for Machine Learning in Tactical Decision Support 

STO-MP-MSG-184 8 - 14 

Figure 12: Transformation of the raw data to an abstracted Tactical Terrain Model using hexagons and a sparse manoeuvre 
graph. 

For the tactical mission model, we modelled infantry units that have properties such as health, traveling 
speed on different terrains, sight range (varying depending on whether the unit is in open area, in a forest or 
in the edge of a forest), weapon range, munition, amongst others. Units move in a turn-based fashion, but 
are able to react first to opponents when lying in an ambush. The red force has as goal to reach the village 
in the south, and the blue force has as goal to neutralize red. Although this is a very rough abstraction of the 
real world, we can argue that similar tactics have to be employed to win the abstract game as well as in the 
real world. We tested this during a demonstration with platoon commanders which found the results of the 
analysis logical. 

Tier-2: 
Desired (unofficial) Tier-2 products the prototype decision support tool should provide include a map of 
engagement positions where enemy contact is to be expected, several likely enemy courses of action 
(routes), and (dis)advantageous positions. These products depend on terrain, but, as well as the primary Tier-
3 product, are also heavily dependent on the mission context (objective, doctrine, units) of both friendly and 
(expected) enemy forces. Therefore, these products lend themselves well to be generated using an automated 
COA optimisation approach. Rather than manually modelling this behaviour to predefined rules, we choose 
to have reinforcement learning algorithms optimise behaviour of both forces, similar to our previous work 
described in [19]. This co-learned optimal behaviour is then recorded, from which the required products can 
be created and visualised for the commander. 

Tier-3: 
The primary required product is an (advisory) assignment of all the commanders forces to their respective 
ambush positions. Using the automated COA optimisation approach described in Section 3.2 these can be 
easily obtained from the learned optimal behaviours. Interestingly, it is also possible to do several what-if 
analyses. For example, during optimisation the intent of the enemy was supposed to be unknown and 
therefore varied (i.e., be fast vs. be safe). It is thus possible to get ambush position assignments, or any Tier-
2 product, given assumptions on both enemy intents. 

Decision support: 
Visualizing optimized behaviour is not straightforward, as the behaviour is internally presented by many 
parameters instead of a human-readable explanation. It is also behaviour that is robust against a wide set of 
opponent tactics, and it is hard to understand generic tactics in cases when it fails against a specific tactic. 
We choose to create explainable results by letting the behaviour of both parties play against each other many 
times, and provide customizable views and statistics to the platoon commander, as seen in Figure 10. 
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At this point we want to stress that the behaviour learned by an algorithm based on abstracted models may 
not resemble the human opponent. Humans follow doctrines, ideology and intuition, while machine learning 
algorithms optimise a goal function in a simulated environment. Such an algorithm is prone to 
overestimating its own performance and it may stumble upon bugs in the simulator or find a loophole in the 
Tactical Terrain or Mission Model and exploit it with unrealistic outcomes as a result. Nevertheless, while 
AI-technologies are being continuously improved, an application of decision support as shown can already 
prove useful now when the learned behaviour is realistic enough to challenge implicit assumptions of the 
platoon commander and widen his/her view during analysis or planning. 

5.0 CONCLUDING REMARKS AND FUTURE WORK 

Supporting the tactical military decision making process with (machine learning) optimization techniques 
requires tactical mission modelling. The currently available simulation models in general take too much 
detail into account and more abstract models are required. We have recognized that products that are 
developed during geospatial engineering as performed in the intelligence preparation of the battlefield 
process can support the more abstract modelling. This work presented an overview of geospatial products 
and classifies them into a tier-based architecture in which products are based on products of underlying tiers; 
inspired by [4]. We furthermore formalize the steps of creating tactical terrain models and tactical mission 
models that abstract the detailed models from lower tiers with the goal of speed for optimization. We present 
how these abstract models can be used to optimize elements of COAs. Two examples are presented of this 
approach that are currently in a so-called Concept Development & Experimentation (CD&E) process which 
means that iteratively the results are presented to stakeholders/users in an experimentation and based on the 
feedback the concepts are refined. 

However promising, many challenges still exist such as how to deal with uncertainties in the tactical terrain 
model and tactical mission model, how to define good measures of effectiveness (reward functions) and 
how to prevent the learned results to be biased because of discrepancies between the real world and the 
modelled world. We want to share some thoughts on how in the future the creation of tactical terrain models 
and tactical mission models in a (semi-)automated manner can be achieved. The general problem 
formulation is how to abstract the world in such manner that calculations can be done in a fraction of a time 
without significantly losing accuracy so that machine learning applications can use these models to create 
large amounts of data. We currently manually make choices on which details are relevant and which ones 
are not relevant to arrive at a mission specific model that is reasonably quick and accurate. Several 
approaches come to mind that can significantly improve on this method.  
(1) Current simulators, such as VR forces, are able to simulate any encounter on any terrain. This is usually 
done for individual units, but can also be done in an aggregated manner [20]. It should be possible to create a 
meta-model of such simulations for a specific mission when collecting statistics of running this simulation in 
many variations. Once these statistics are available, running the underlying simulator is not needed any more 
(e.g., blue inf squad A against red tank squad B on location C results in some average amount of losses of A 
and B with a certain standard deviation). Such results should be fairly accurate and the machine learning 
algorithm can sample from the resulting distribution rather than using the simulator itself.  

(2) The design of the goal function needs to be performed carefully, as machine learning algorithms search for 
strategies and loopholes to increase the score of the chosen function [21]. The goal function has to be closely 
related to the commanders intent. As each mission has its own intent and it has to be interpreted within the 
current mission context, the translation is not trivial. At TNO we are currently investigating possibilities to 
analyse the free text of a commanders intent and translate it to computable goal function components that are 
being briefed back to the commander. The goal is that the military commander will be able to design the goal 
function in natural language based on the intent. 
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(3) With the current successes of deep neural networks, we can envision a multitude of applications that may 
be possible in the future that enable shifts from traditional models to a computation by a neural network. Rather 
than defining game rules and behaviour, neural networks may learn create realistic simulations, or even only 
their outcomes, based on provided examples. As data is generally sparse in the military domain, the use of 
simulators seems promising. Such networks may be able to learn intrinsic relations within mission concepts 
and create fast and accurate meta-modelling and predictions. 

The idea is by using the CD&E approach we will be able to iteratively improve the concepts in order to bring 
tactical decision support to the war fighter. 
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